Inverse Matrices

Definition

An $n \times n$ matrix A is said to be nonsingular (or invertible) if an $n \times n$ matrix A^{-1} exists with $A A^{-1}=A^{-1} A=I$. The matrix A^{-1} is called the inverse of A. A matrix without an inverse is called singular (or noninvertible).

Theorem

For any nonsingular $n \times n$ matrix A :
(i) A^{-1} is unique.
(ii) A^{-1} is nonsingular and $\left(A^{-1}\right)^{-1}=A$.
(iii) If B is also a nonsingular $n \times n$ matrix, then $(A B)^{-1}=B^{-1} A^{-1}$.

Solving a Linear System Using Inverse Matrix:

$$
A \mathbf{x}=\mathbf{b} \Rightarrow \mathbf{x}=A^{-1} \mathbf{b}
$$

Computation of Inverse Matrix:

Let B_{j} be the j th column of the $n \times n$ matrix B,

$$
B_{j}=\left[\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{n j}
\end{array}\right]
$$

If $A B=C$, then the j th column of C is given by the product

$$
\left[\begin{array}{c}
c_{1 j} \\
c_{2 j} \\
\vdots \\
c_{n j}
\end{array}\right]=C_{j}=A B_{j}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{n j}
\end{array}\right]=\left[\begin{array}{c}
\sum_{k=1}^{n} a_{1 k} b_{k j} \\
\sum_{k=1}^{n} a_{2 k} b_{k j} \\
\vdots \\
\sum_{k=1}^{n} a_{n k} b_{k j}
\end{array}\right]
$$

Suppose that A^{-1} exists and that $A^{-1}=B=\left(b_{i j}\right)$. Then $A B=I$ and

$$
A B_{j}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] \text {, where the value } 1 \text { appears in the } j \text { th row. }
$$

Solving the above linear system j th column of the inverse matrix is obtained. So,

To find B we need to solve n linear systems in which the j th column of the inverse is the solution of the linear system with right-hand side the j th column of I.

Illustration

To determine the inverse of the matrix

$$
A=\left[\begin{array}{rrr}
1 & 2 & -1 \\
2 & 1 & 0 \\
-1 & 1 & 2
\end{array}\right]
$$

let us first consider the product $A B$, where B is an arbitrary 3×3 matrix.

$$
\begin{aligned}
A B & =\left[\begin{array}{rrr}
1 & 2 & -1 \\
2 & 1 & 0 \\
-1 & 1 & 2
\end{array}\right]\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
b_{11}+2 b_{21}-b_{31} & b_{12}+2 b_{22}-b_{32} & b_{13}+2 b_{23}-b_{33} \\
2 b_{11}+b_{21} & 2 b_{12}+b_{22} & 2 b_{13}+b_{23} \\
-b_{11}+b_{21}+2 b_{31} & -b_{12}+b_{22}+2 b_{32} & -b_{13}+b_{23}+2 b_{33}
\end{array}\right] .
\end{aligned}
$$

If $B=A^{-1}$, then $A B=I$, so

$$
\begin{aligned}
& b_{11}+2 b_{21}-b_{31}=1, \quad b_{12}+2 b_{22}-b_{32}=0, \quad b_{13}+2 b_{23}-b_{33}=0, \\
& 2 b_{11}+b_{21}=0, \quad 2 b_{12}+b_{22}=1, \quad \text { and } 2 b_{13}+b_{23}=0 \text {, } \\
& -b_{11}+b_{21}+2 b_{31}=0, \quad-b_{12}+b_{22}+2 b_{32}=0, \quad-b_{13}+b_{23}+2 b_{33}=1 \text {. }
\end{aligned}
$$

Since for all systems the coefficients matrix is the same, Gaussian elimination can be performed on a larger augmented matrix:

$$
\left[\begin{array}{rrrrr:r}
1 & 2 & -1 & 1 & 0 & \vdots \\
2 & 1 & 0 & 0 & 1 & 0 \\
-1 & 1 & 2 & 0 & 0 & 0 \\
1
\end{array}\right]
$$

First, performing $\left(E_{2}-2 E_{1}\right) \rightarrow\left(E_{2}\right)$ and $\left(E_{3}+E_{1}\right) \rightarrow\left(E_{3}\right)$, followed by $\left(E_{3}+E_{2}\right) \rightarrow\left(E_{3}\right)$ produces

$$
\left[\begin{array}{rrrcc:c}
1 & 2 & -1 & 1 & 0 & \vdots \\
0 & -3 & 2 & -2 & 1 & 0 \\
0 & 3 & 1 & 1 & 0 & 1
\end{array}\right] \text { and }\left[\begin{array}{rrrcc:c}
1 & 2 & -1 & 1 & 0 & \vdots \\
0 & -3 & 2 & -2 & 1 & 0 \\
0 & 0 & 3 & -1 & 1 & 1
\end{array}\right] .
$$

Backward substitution is performed on each of the three augmented matrices,

$$
\left[\begin{array}{rrr:r}
1 & 2 & -1 & \vdots \\
0 & -3 & 2 & -2 \\
0 & 0 & 3 & -1
\end{array}\right],\left[\begin{array}{rrr:r}
1 & 2 & -1 & \vdots \\
0 & -3 & 2 & \vdots \\
0 & 0 & 3 & 1
\end{array}\right],\left[\begin{array}{rrr:r}
1 & 2 & -1 & \vdots \\
0 & -3 & 2 & 0 \\
0 & 0 & 3 & 1
\end{array}\right],
$$

to eventually give

$$
\begin{array}{lll}
b_{11}=-\frac{2}{9}, & b_{12}=\frac{5}{9}, & b_{13}=-\frac{1}{9}, \\
b_{21}=\frac{4}{9}, & b_{22}=-\frac{1}{9}, \\
b_{31}=-\frac{1}{3}, & b_{32}=\frac{1}{3}, & b_{23}=\frac{2}{9}, \\
b_{32}=\frac{1}{3} .
\end{array}
$$

So, the inverse matrix is:

$$
B=A^{-1}=\left[\begin{array}{rrr}
-\frac{2}{9} & \frac{5}{9} & -\frac{1}{9} \\
\frac{4}{9} & -\frac{1}{9} & \frac{2}{9} \\
-\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right]
$$

Gaussian elimination with backward substitution requires:
$\frac{4}{3} n^{3}-\frac{1}{3} n$ multiplications/divisions
$\frac{4}{3} n^{3}-\frac{3}{2} n^{2}+\frac{n}{6}$ additions/subtractions
to solve the n linear systems.
So, it is not computationally efficient to determine A^{-1} in order to solve the system.

Transpose of a Matrix

The transpose of an $n \times m$ matrix $A=\left[a_{i j}\right]$ is the $m \times n$ matrix $A^{t}=\left[a_{j i}\right]$, where for each i, the ith column of A^{t} is the same as the i th row of A. A square matrix A is called symmetric if $A=A^{t}$.

The Determinant of a Matrix

Definition

Suppose that A is a square matrix.
(i) If $A=[a]$ is a 1×1 matrix, then $\operatorname{det} A=a$.
(ii) If A is an $n \times n$ matrix, with $n>1$ the minor $M_{i j}$ is the determinant of the $(n-1) \times(n-1)$ submatrix of A obtained by deleting the i th row and j th column of the matrix A.
(iii) The cofactor $A_{i j}$ associated with $M_{i j}$ is defined by $A_{i j}=(-1)^{i+j} M_{i j}$.
(iv) The determinant of the $n \times n$ matrix A, when $n>1$, is given either by

$$
\operatorname{det} A=\sum_{j=1}^{n} a_{i j} A_{i j}=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} M_{i j}, \quad \text { for any } i=1,2, \cdots, n,
$$

or by

$$
\operatorname{det} A=\sum_{i=1}^{n} a_{i j} A_{i j}=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} M_{i j}, \quad \text { for any } j=1,2, \cdots, n
$$

Theorem

Suppose A is an $n \times n$ matrix:
(i) If any row or column of A has only zero entries, then $\operatorname{det} A=0$.
(ii) If A has two rows or two columns the same, then $\operatorname{det} A=0$.
(iii) If \tilde{A} is obtained from A by the operation $\left(E_{i}\right) \leftrightarrow\left(E_{j}\right)$, with $i \neq j$, then $\operatorname{det} \tilde{A}=$ $-\operatorname{det} A$.
(iv) If \tilde{A} is obtained from A by the operation $\left(\lambda E_{i}\right) \rightarrow\left(E_{i}\right)$, then $\operatorname{det} \tilde{A}=\lambda \operatorname{det} A$.
(v) If A is obtained from A by the operation $\left(E_{i}+\lambda E_{j}\right) \rightarrow\left(E_{i}\right)$ with $i \neq j$, then $\operatorname{det} \tilde{A}=\operatorname{det} A$.
(vi) If B is also an $n \times n$ matrix, then $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$.
(vii) $\operatorname{det} A^{t}=\operatorname{det} A$.
(viii) When A^{-1} exists, $\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1}$.
(ix) If A is an upper triangular, lower triangular, or diagonal matrix, then $\operatorname{det} A=\prod_{i=1}^{n} a_{i i}$.

Theorem

The following statements are equivalent for any $n \times n$ matrix A :
(i) The equation $A \mathrm{x}=0$ has the unique solution $\mathrm{x}=0$.
(ii) The system $A \mathbf{x}=\mathrm{b}$ has a unique solution for any n-dimensional column vector \mathbf{b}.
(iii) The matrix A is nonsingular; that is, A^{-1} exists.
(iv) $\operatorname{det} A \neq 0$.
(v) Gaussian elimination with row interchanges can be performed on the system $A \mathbf{x}=\mathbf{b}$ for any n-dimensional column vector \mathbf{b}.

HOMEWORK 7:
Exercise Set 6.3: 7
Exercise Set 6.4: 7, 8

Matrix Factorization

$A \mathbf{x}=\mathbf{b} \quad A=L U$

L is lower triangular

U is upper triangular

Not all matrices have this type of representation, but many do that occur in the application of numerical techniques.

$A \mathbf{x}=\mathbf{b} \Rightarrow \boldsymbol{L} \boldsymbol{U} \mathbf{x}=\mathbf{b}$

To compute x , two following systems are solved respectively:

$$
L y=b
$$

$\boldsymbol{U x}=\mathbf{y}$

Determination of L and U Matrices

Gaussian elimination method consists of several steps to make the matrix
upper triangular. $\bar{a}_{i i}^{(i)}$ for each $\mathrm{i}=1,2, \ldots, \mathrm{n}$ is defined as the pivot element corresponding to the i th step. Suppose all pivot elements are non-zero.

The first step in the Gaussian elimination process
$\left(E_{j}-m_{j, 1} E_{1}\right) \rightarrow\left(E_{j}\right), \quad$ where $\quad m_{j, 1}=\frac{a_{j 1}^{(1)}}{a_{11}^{(1)}}$.
$j=2,3, \ldots, n$

Operations (6.8) can be accomplished by multiplying A on the left by the matrix:

$$
M^{(1)}=\left[\begin{array}{ccccc}
1 & 0 & \cdots \cdots \cdots \cdots 0 \\
-m_{21} & 1 & \ddots & & \\
\vdots & 0 & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
-m_{n 1} & 0 & \cdots \cdots \cdots & 0 & 1
\end{array}\right]
$$

This is called the first Gaussian transformation matrix. We denote the product of this matrix with $A^{(1)} \equiv A$ by $A^{(2)}$ and with \mathbf{b} by $\mathbf{b}^{(2)}$, so

$$
A^{(2)} \mathbf{x}=M^{(1)} A \mathbf{x}=M^{(1)} \mathbf{b}=\mathbf{b}^{(2)}
$$

In a similar manner we construct $M^{(2)}$, the identity matrix with the entries below the diagonal in the second column replaced by the negatives of the multipliers

$$
m_{j, 2}=\frac{a_{j 2}^{(2)}}{a_{22}^{(2)}}
$$

The product of this matrix with $A^{(2)}$ has zeros below the diagonal in the first two columns, and we let

$$
A^{(3)} \mathbf{x}=M^{(2)} A^{(2)} \mathbf{x}=M^{(2)} M^{(1)} A \mathbf{x}=M^{(2)} M^{(1)} \mathbf{b}=\mathbf{b}^{(3)} .
$$

In general, with $A^{(k)} \mathbf{x}=\mathbf{b}^{(k)}$ already formed, multiply by the k th Gaussian transformation matrix
to obtain

$$
\begin{equation*}
A^{(k+1)} \mathbf{x}=M^{(k)} A^{(k)} \mathbf{x}=M^{(k)} \cdots M^{(1)} A \mathbf{x}=M^{(k)} \mathbf{b}^{(k)}=\mathbf{b}^{(k+1)}=M^{(k)} \cdots M^{(1)} \mathbf{b} \tag{6.9}
\end{equation*}
$$

The process ends with the formation of $A^{(n)} \mathbf{x}=\mathbf{b}^{(n)}$, where $A^{(n)}$ is the upper triangular matrix

$$
A^{(n)}=\left[\begin{array}{ccccc}
a_{11}^{(1)} & a_{12}^{(1)} & \cdots \cdots \cdots & \cdots & a_{1 n}^{(1)} \\
0 & a_{22}^{(2)} & \ddots & \ddots & \ddots \\
\vdots & \ddots & \\
\vdots & \ddots & \ddots & \ddots & a_{n-1, n}^{(n-1)} \\
0 & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & a_{n n}^{(n)}
\end{array}\right],
$$

given by

$$
A^{(n)}=M^{(n-1)} M^{(n-2)} \cdots M^{(1)} A
$$

